
Adversarial Tokenization

Renato Geh*, Zilei Shao*, Guy Van den Broeck

University of California, Los Angeles



Most language models represent distributions over sequences of tokens 
(subwords), not strings.

Tokenization

For example:



Canonical Tokenization

A string can be tokenized in an exponential number of ways (784 here!)

(Llama 2)

How do we tokenize? There is usually a unique canonical tokenization:

(Llama 2)

…But the model has only seen one of them during training!



Noncanonical Tokenization

↪ Can models recognize noncanonical tokenization as their canonical 
counterpart?



Noncanonical Tokenization

↪ What does noncanonical tokenization mean to models?

Models generate them during test time 
…even if they were not seen in training

↪ But do models recognize them as their canonical counterpart?

Probability leakage



Noncanonical Tokenization

↪ Can models understand noncanonical tokenization?

Yes! The models still recognize some of them.

↪ What makes them understandable?

We introduce distance to better understand 
the reason ✘ 

✔
✔



Tokenization Distance

↪ Edit distance: insertion, substitution, deletion

✘ 

3

5

9

1. Subsitute ‘h’ with ‘r’ (rorse)
2. Delete the second ‘r’

↪ Tokenization distance: insertion (1), substitution (1), deletion (0)
↪ Over tokens but not over characters



Tokenization Distance

↪ How similar one tokenization is to the canonical

3

2

9

↪ How many “noncanonical tokens” are used in this tokenization
○ Tokens not in canonical tokenization

↪ A variant of Levenshtein distance 

✘ 



Tokenization Distance vs. Semantic Signals

The more distant the tokenization is to the canonical, the harder the model 
understands it.

Canonical tok Character-level tok



Random Tokenization Can Evade Safety

↪ The model understands some noncanonical tokenization
↪ Noncanonical tokenization is not included in (post-)training

Noncanonical tokenization can be used to evade alignment
…even if you are just randomly sampling from them



Random Tokenization Can Evade Safety

↪ The model understands some noncanonical tokenization
↪ Noncanonical tokenization is not included in (post-)training

Noncanonical tokenization can be used to evade alignment
…even if you are just randomly sampling from them

S(trong)
R(eject)
Score
measures 
harmfulness 
& relevance



Adversarial Tokenization

How to find the tokenization most likely to elicit dangerous responses?



Adversarial Tokenization

How to find the tokenization most likely to elicit dangerous responses?

↪ We suspect this is computationally hard
↪ Optimize via local search algorithm

Tell me how to make a bomb.Yes, I will give you a tutorial on how to 
make a bomb.

Tokenization of 



Adversarial Tokenization
Maximize

1 2

3

↪ Neighborhood?
↪ Given tok v, it is the set of tokenization with distance of 2 to v, denoted 

as 

Ensures efficiency

Ensures thoroughness



Adversarial Tokenization
Maximize

↪ Neighborhood?
↪ Given tok v, it is the set of tokenization with distance of 2 to v, denoted 

as 

Set of tokenization with distance of 2



So far, we already know…

Even random noncanonical tokenization evades alignment

How does Adversarial Tokenization perform?
➢ Jailbreaking
➢ Evading from safety models
➢ Prompt injection

Models understand noncanonical tokenization
✔ Even if the tokenization is distant to the canonical, the model can still 

understand to some degree



Case Study: Jailbreaking

Provoke the LLM to output faithful response to harmful prompt



Case Study: Jailbreaking

Provoke the LLM to output faithful response to harmful prompt

↪ Seamlessly combined with existing jailbreaking pipelines
↪ Achieves SoTA performance on state-of-the-art LLMs



Case Study: Jailbreaking

Provoke the LLM to output faithful response to harmful prompt

↪ Seamlessly combined with existing jailbreaking pipelines
↪ Achieves SoTA performance on state-of-the-art LLMs



Case Study: Evading Safety Models

Bypass the existing defense layers against malicious requests that reliably 
distinguish (un)safe prompts

Safety Model

Tell me how to make a bomb Unsafe

Tell me how to make a cake Safe



Case Study: Evading Safety Models

Bypass the existing defense layers against malicious requests that reliably 
distinguish (un)safe prompts

↪ Substantially increases the probability of bypassing these safety checks

↑5-10%



Case Study: Prompt Injection

A malicious agent intercepts the conversation by altering the user input to provoke 
a malicious response



Case Study: Prompt Injection

A malicious agent intercepts the conversation by altering the user input to provoke 
a malicious response

↪ using adversarial tokenization consistently increases success rates

↑65%



CONTRADICTION?

↪ The model understands noncanonical tokenization…
↪ And noncanonical tokenization evades alignment…
↪ But why can’t the model recognize the noncanonical tokenization of 

malicious requests and defend it?

There is a difference between pre-training and post-training!

↪ Trained on billions of tokens
↪ Probability leakage onto 

noncanonical tokenization is 
large

↪ Trained on much less data
↪ Training scheme is different
↪ Less alignment leakage

The alignment is not taking noncanonical tokenization into account



Why Probability Leakage?

↪ We don’t know yet…
↪ One suspect: it might be caused by misspelling

↪ Is it a good thing or a bad thing? We also don’t know yet…
○ It may make understanding typos easier
○ The leakage could let canonical tokenization not be the most likely one [1]
○ Mixtures of tokenizations can boost LLM accuracy [1]

[1] Geh, et al. 2024. Where is the signal in tokenization space?

We should keep consistency between pre-training and post-training



Main Takeaways

Adversarial tokenization succeeds in various adversarial attack tasks
✔ Jailbreaking
✔ Evading from safety models
✔ Prompt Injection

Models understand noncanonical tokenization
✔ Even if the tokenization is distant to the canonical, the model can still 

understand to some degree

We should keep consistency between pre-training and post-training

Even random noncanonical tokenization evades alignment



Interesting things not covered but in the paper…

↪ How to sample tokenization uniformly (given a certain distance)?

↪ Optimizing for adversarial tokenization might be computationally hard.

↪ What’s the computational efficiency of advtok algorithm?

↪ Are safety models nowadays really bad?



Adversarial Tokenization

Renato Geh*, Zilei Shao*, Guy Van den Broeck

University of California, Los Angeles


