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Abstract

Training deep generative models like Variational Autoen-
coders (VAEs) is often hindered by the need to backprop-
agate gradients through the stochastic sampling of their la-
tent variables, a process that inherently introduces estima-
tion variance, which can slow convergence and degrade per-
formance. In this paper, we propose a new perspective that
sidesteps this problem, which we call Silent Gradients. In-
stead of improving stochastic estimators, we leverage specific
decoder architectures to analytically compute the expected
ELBO, yielding a gradient with zero variance. We first pro-
vide a theoretical foundation for this method and demonstrate
its superiority over existing estimators in a controlled setting
with a linear decoder. To generalize our approach for practical
use with complex, expressive decoders, we introduce a novel
training dynamic that uses the exact, zero-variance gradient
to guide the early stages of encoder training before anneal-
ing to a standard stochastic estimator. Our experiments show
that this technique consistently improves the performance of
established baselines, including reparameterization, Gumbel-
Softmax, and REINFORCE, across multiple datasets. This
work opens a new direction for training generative models
by combining the stability of analytical computation with the
expressiveness of deep, nonlinear architecture.

1 Introduction
Training of neural networks with stochastic components,
such as the sampling of latent variables in generative mod-
els, often suffers from high variance in gradient estimates.
This variance can impede the optimization process, leading
to slower convergence and suboptimal model performance.
In Variational Autoencoders (VAEs) (Kingma and Welling
2014; Rezende, Mohamed, and Wierstra 2014), for instance,
gradients must be propagated through a stochastic sampling
layer. This has led to the development of several estima-
tion techniques. For continuous latent spaces, the reparam-
eterization trick (Kingma and Welling 2014) is commonly
used. For discrete spaces, common approaches include the
REINFORCE algorithm (Williams 1992) and the Gumbel-
Softmax trick (Maddison, Mnih, and Teh 2017; Jang, Gu,
and Poole 2017). However, all of these sample-based tech-
niques introduce estimation variance, and in this paper we
show that this variance hinders the optimization even in a
simple, controlled setting.

Figure 1: Illustration of the use of Silent Gradients in train-
ing VAEs. The encoder (Eϕ) takes input x and infers a la-
tent distribution qϕ(z|x). These parameters are fed directly
to the linear decoder (Dlin), which computes the analytical
reconstruction log-likelihood, yielding a noise-free (Silent)
gradient (dashed teal arrow) used to train the encoder. In
parallel, samples z′ are drawn from the latent distribution
and fed to the nonlinear decoder (Dnl), which produces a
standard, sample-based loss, resulting in a noisy gradient
(dashed orange arrow). The solid black arrows represent the
forward pass, while the dashed teal and orange arrows indi-
cate the flow of gradients. During training, we can choose
to train the encoder solely with the Silent Gradients or com-
bine it with the noisy gradient using an annealing schedule.
At inference time, only the trained encoder Eϕ and nonlin-
ear decoder Dnl are used.
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In this paper, we propose a fundamentally different per-
spective on gradient estimation for VAEs. Given the estima-
tion variance introduced by these stochastic gradient estima-
tors, we argue for a different paradigm. Instead of develop-
ing more sophisticated techniques to estimate the gradient of
an expectation, we explore the possibility of first efficiently1

computing the expectation itself in closed form, and then
differentiating the resulting analytical expression. This path,
when available, yields a gradient that is computed exactly
and therefore has zero variance by definition, in terms of the
latent variables.

The feasibility of this approach hinges on the decoder ar-
chitecture. While it is well-known that for a linear function,
the expectation of its output can be computed exactly by lin-
earity of expectation, this does not trivially extend to the
full reconstruction log-likelihood. We first show that for a
Gaussian likelihood with a fixed variance, the expected loss
can still be computed in closed form, as a function of the
latent distribution rather than the sampled latent variables.
We then empirically demonstrate that using this analytic gra-
dient leads to superior performance and faster convergence
compared to standard stochastic estimators in this setting.

Furthermore, we extend this technique to a more ex-
pressive setting where the output variance is also a learn-
able function of the same latent variables, again providing
a zero-variance gradient. This analytic gradient component
can then boost the performance of existing standard stochas-
tic gradient estimators.

Finally, to generalize our method for more complex and
practical settings, we introduce a novel training dynamic,
depicted in Figure 1, that combines our analytic gradient
component with standard, expressive nonlinear decoders. By
using Silent Gradients to guide the initial training of the en-
coder before annealing to a conventional estimator, our tech-
nique serves as a powerful variance reduction tool that con-
sistently improves the performance of established methods.

Our experimental results on the MNIST (Deng 2012), Im-
ageNet (Deng et al. 2009), and CIFAR-10 (Krizhevsky and
Hinton 2009) datasets demonstrate a significant and consis-
tent improvement in model performance. This shows that ar-
chitectural choices that provide exact gradients are a power-
ful and general strategy for improving the training dynamics
of models with stochastic layers.

2 Background
Variational Autoencoders (VAEs) (Kingma and Welling
2014) are a class of generative models for learning the prob-
ability distribution p(x) that underlies a dataset. VAEs in-
troduce a set of latent variables z that are assumed to gen-
erate the observed data x. The model consists of two com-
ponents: a prior distribution over the latent space p(z) and
a conditional likelihood distribution pθ(x|z), defined by the
decoder Dθ. The marginal likelihood of the model given the
data then is pθ(x) = Ez∼p(z)[pθ(x|z)].

Since direct maximization of this likelihood is gener-
ally intractable, VAEs introduce a variational approxima-
tion qϕ(z|x) to the true posterior pθ(z|x), called the en-

1In time linear in the number of latent dimensions.

coder Eϕ, parameterized by ϕ. Instead of maximizing the
log-likelihood directly, one maximizes the Evidence Lower
Bound (ELBO) (Jordan et al. 1999):

Ez∼qϕ(z|x)[log pθ(x|z)]−DKL(qϕ(z|x) || p(z)). (1)
The first term is the expected reconstruction log-

likelihood, which encourages the decoder to reconstruct the
input x from its latent representation z. The second term is
the Kullback-Leibler (KL) divergence, which forces the ap-
proximate posterior qϕ(z|x) to be close to the prior p(z).
Maximizing the ELBO provides a framework to jointly train
the encoder and decoder parameters, ϕ and θ, respectively.

3 Exact ELBO with Linear Decoder
While the KL divergence term is often analytically
tractable by employing the mean-field assumption, in which
the approximate posterior factorizes across latent dimen-
sions: q(z|x) :=

∏
i q(zi|x), the reconstruction term,

Ez∼qϕ(z|x)[log pθ(x|z)], remains intractable to compute.
This difficulty comes from the complexity of the decoder
function pθ(x|z), which is typically a deep neural network.
Consequently, estimating the gradient of this reconstruction
term with respect to the encoder parameters ϕ poses a chal-
lenge since the gradient operator∇ϕ cannot be passed inside
an expectation that depends on those same parameters.

To resolve this problem, various techniques have been in-
troduced (Williams 1992; Jang, Gu, and Poole 2017; Mad-
dison, Mnih, and Teh 2017; Kingma and Welling 2014).
However, we show that even widely-used estimators like the
reparameterization trick can be far from optimal. Specif-
ically, we compute the average gradient variance of the
ELBO for single samples on the MNIST dataset (Deng
2012) at three different training stages (epochs 10, 200, and
500). This allows us to directly compare the gradient noise
introduced by each estimator and observe how it evolves
during optimization.

As shown in Section 2, the variance of the gradients for
standard estimators is substantial. Even for the reparame-
terization trick, which is considered a low-variance method,
the gradient noise is significant and can hinder optimization.
This naturally raises the question: how much performance is
lost to this estimation variance, and what could be gained if
we were able to compute the exact ELBO and its gradients?
This motivates our exploration of an analytical approach.

3.1 Analytic gradient
As established, the intractability of the reconstruction term
comes from the complexity of the decoder pθ(x|z), which
is typically a deep neural network. This motivates an inves-
tigation into specific architectural choices where this analyt-
ical bottleneck can be resolved. We show that for a specific
model structure, the expectation in the reconstruction term
can be computed exactly (i.e., the first term in Eq. 1), by-
passing the need for stochastic estimation entirely. Let the
data x and latent variable z be column vectors of dimen-
sions k and d, respectively. We consider a generative like-
lihood pθ(x|z) that is a Gaussian distribution with a mean
produced by a linear decoder and a fixed, scalar variance σ2:

pθ(x|z) = N (x;Wµz, σ
2I). (2)



Epoch

Method 10 200 500

Continuous Silent Gradients 0 0 0
Reparameterization 1.08× 105 1.78× 104 1.37× 104

Discrete
Silent Gradients 0 0 0
Gumbel-Softmax 1.10× 105 2.08× 105 1.68× 105

REINFORCE 2.30× 108 6.30× 107 4.00× 107

Table 1: Comparison of the total gradient variance with respect to the encoder parameters. Continuous and Discrete refer to
the type of latent space. The variance is measured by repeatedly sampling gradients for a fixed input batch at different training
epochs. The results show that existing gradient estimators have substantial variance. In contrast, our method (Silent Gradients)
has a true variance of zero as its gradient is computed analytically.

where the decoder is parameterized by the weight matrix
Wµ ∈ Rk×d. For simplicity, we will denote the expectation
Ez∼qϕ(z|x) as E where the context is clear.

Although this linear setup may seem restrictive, we will
show in later sections that this technique forms the basis
of a general method applicable to any VAEs. For now, we
proceed by substituting this linear decoder structure into the
ELBO reconstruction term:

E[log pθ(x|z)] = −
1

2σ2
E[||x−Wµz||22]−

1

2
log(2πσ2).

(3)

To compute this term exactly, all we need is to find an ana-
lytical form for the expectation E[||x−Wµz||22]. We begin
by expanding the squared L2 norm:

E[||x−Wµz||22] = E[(x−Wµz)
T (x−Wµz)],

= E[||x||22 − 2xTWµz + ||Wµz||22].

By linearity of expectation, and because x and Wµ are con-
stants with respect to the expectation over z, we simplify:

E[||x−Wµz||22] = ||x||22 − 2xTWµE[z] + E[||Wµz||22].

The challenge lies in resolving the third term E[||Wµz||22]
since a naive computation of this expectation would take
timeO(k2d), which is quadratic w.r.t. the number of X vari-
ables. However, we can reduce the complexity by exploiting
the fact that different variables in z are mutually indepen-
dent due to the mean-field assumption.

We begin by expanding the quadratic term into a double
summation E[||Wµz||22] =

∑
i

∑
j w

T
µ,iwµ,jE[zizj ], where

wµ,i is the ith column of Wµ. Using the identity E[zizj ] =
E[zi]E[zj ] + Cov(zi, zj), we split this summation into two
parts:∑

i,j

wT
µ,iwµ,jE[zi]E[zj ] +

∑
i,j

wT
µ,iwµ,j Cov(zi, zj).

The first term, containing the expectations, can be factored
into the square of a sum: (

∑
i wµ,iE[zi])2, which can be

computed in O(kd) time. The second covariance term can
be simplified due to the independence of the latent variables.
The covariance is zero for all zi, zj (i ̸= j) pairs, zeroing out

all cross-terms. This collapses the double summation into a
single sum over the variances Var(zi). The final analytical
expression is the sum of these two simplified components:2

E[||Wµz||22] = ||
∑
i

wµ,iE[zi]||22 +
∑
i

||wµ,i||22Var(zi).

(4)
Therefore, the expected squared error becomes:

E[||x−Wµz||22] = ||x||22 − 2xT

(∑
i

wµ,iE[zi]

)

+

∣∣∣∣∣
∣∣∣∣∣∑

i

wµ,iE[zi]

∣∣∣∣∣
∣∣∣∣∣
2

2

+
∑
i

||wµ,i||22Var(zi).

Finally, we substitute this closed-form expression
back into the expected reconstruction log-likelihood
E[log pθ(x|z)]:

− 1

2σ2

[
||x−Wµz||2 +

∑
i

||wµ,i||22Var(zi)
]
− 1

2
log(2πσ2).

This final equation is fully analytical. The expectation
over the latent variable z has been entirely eliminated,
and the reconstruction loss now depends only on the mean
(E[zi]) and variance Var(zi) of the latent distribution. This
allows for direct and analytic gradient computation with re-
spect to the encoder parameters.

3.2 Do Analytic Gradients help?
As we show that the ELBO (and its gradients) can be
computed exactly in an idealized setting with a linear de-
coder, we now investigate the practical impact of this zero-
variance gradient. We conduct a controlled experiment on
the MNIST dataset (Deng 2012) to quantify the performance
gains from eliminating gradient estimation noise. This ex-
periment uses the same simple VAE with a linear decoder
and fixed output variance (σ2 = 0.01) (cf. Eq. (2)) as our
our gradient variance analysis in Section 2, a setting de-
signed to isolate the estimator’s impact rather than to achieve
state-of-the-art results. To ensure a fair comparison, we per-
form a separate hyperparameter search for each method.

2The detailed step-by-step derivation is in Appendix A.1.



Method
MNIST

BPD (↓) MSE (↓)

Continuous Silent Gradients 6.718 3.011
Reparameterization 6.722 3.059

Discrete
Silent Gradients 6.900 6.103
Gumbel-Softmax 6.990 7.670
REINFORCE 7.208 9.289

Table 2: Performance comparison on MNIST using a linear
decoder with a latent dimension of 200 under fixed variance
σ2 = 0.01. The best BPD and MSE values for the continu-
ous and discrete latent space are in bold, respectively. Silent
Gradients consistently outperforms stochastic gradient esti-
mators in terms of BPD and MSE.

By epoch 500, all models have converged, and we report
all final metrics at this point. All further details regarding
the model architecture and hyperparameters can be found in
Appendix B. We benchmark our method, Silent Gradients,
against the reparameterization trick in the continuous latent
space and against the Gumbel-Softmax estimator and the
REINFORCE algorithm in the discrete space. Model per-
formance is evaluated using Bits Per Dimension (BPD) and
Mean Squared Error (MSE).

The results, summarized in Section 3.2, demonstrate the
consistent advantages of our method. In the discrete latent
space setting, our method achieves a substantially lower
BPD than the corresponding baseline estimators. In the con-
tinuous case, while the final BPD scores are comparable,
our method demonstrates significantly faster convergence;
Silent Gradients reaches a BPD of 6.73 in just 45 epochs, a
milestone that the standard reparameterization trick requires
90 epochs to achieve.

Besides BPD scores, the low MSE of our method con-
firms the high-fidelity image reconstruction, indicating that
the reported BPD is not limited by poor reconstruction qual-
ity but is instead constrained by the fixed-variance assump-
tion. The sharp reconstructions in Appendix C visually cor-
roborate this conclusion.

4 More Expressive Decoders
We have shown that Silent Gradients offers a significant per-
formance boost when the analytic gradient of the ELBO can
be tractably computed. However, it is still unclear how to
apply our method to VAEs with more general decoders. We
address this in two steps: first, we demonstrate how to gen-
eralize the linear Gaussian decoder setting to make the vari-
ance a learnable parameter. Next, we show that this tractable
linear component can be integrated with any existing VAE
to guide encoder learning.

4.1 Linear Decoders with Learnable Variance
A key limitation of the fixed-variance Gaussian decoder in-
troduced in the previous section is its inability to dynami-
cally adjust confidence across different variables, resulting
in significant performance degradation. This motivates gen-

eralizing our approach to allow variance to be a learnable,
data-dependent function of the latent variable z. That is,
given latents z, we predict both the mean µ(z) and the vari-
ance σ2(z) of the Gaussian distribution.

Under this parameterization, the first term of the expected
reconstruction log-likelihood (i.e., Eq. (3)) is generalized to
E[ (x−µ(z))2

2σ2(z) ]. Computing the expectation of a reciprocal is
#P-hard for simple function classes including multilinear
polynomials (Vergari et al. 2021). Furthermore, to ensure
the expression is well-defined, σ2(z) must be strictly pos-
itive. While this can be enforced through techniques such as
lower-bounding the variance by clipping, these approaches
introduce discontinuities that complicate the analytical com-
putation of the expectation and may hinder stable optimiza-
tion. In addition, the second term in the reconstruction log-
likelihood, 1

2 log(2πσ
2(z)), that involves the expectation

of a logarithm, is also computationally hard (Vergari et al.
2021).

To sidestep these challenges, we propose to represent the
scale of the Gaussian distribution by the reciprocal of the
standard deviation.3 Formally, this quantity is called preci-
sion and is defined as α(z) = 1/σ(z).

Following Section 3, we define both the mean µ(z) and
the precision as linear functions of the latent variable z:

µ(z) = Wµz, α(z) = Wαz,

which gives the model flexibility to assign pixel-wise uncer-
tainty. Following eq. (2), we define the generative likelihood
as a Gaussian distribution where the mean is given by µ(z)
and the variance is the element-wise inverse square of α(z):

pθ(x|z) = N
(
x;µ(z), diag

(
1

α(z)2

))
. (5)

By the definition of the precision, the expected reconstruc-
tion log-likelihood from the ELBO becomes:

E[log pθ(x|z)] = −
1

2
E
[
||(x− µ(z))⊙ α(z)||22

]
+ E[log(α(z))]− 1

2
log(2π).

(6)

The exact computation of both the first term and the sec-
ond term is non-trivial. The first term involves an expecta-
tion of products of correlated functions of z. The second
term is hard since E[log(α(z))] ̸= log(E[α(z)]).

We expand the first expectation term as follows:

E
[
||(x− µ(z))Tα(z)||22

]
=

1T
(
||x||22 E

[
||Wαz||22

]
− 2x⊙ E

[
Wµz||Wαz||22

]
+ E

[
||Wµz||22||Wαz||22

] )
.

The first term in this expansion, E
[
||Wαz||22

]
, is identical

in form to the quadratic term derived in the fixed-variance
setting (i.e. Equation (4)). As we showed previously, it can

3This parametrization aligns with the classical notion of preci-
sion, as originally defined by Gauss (1877); today the term preci-
sion is also used to denote the reciprocal of the variance.



be computed analytically, depending on only the mean and
variance of latent distribution.

For the two remaining terms, E[Wµz||Wαz||22], and
E[||Wµz||22||Wαz||22], we begin the derivation by separat-
ing the terms into their expected values and covariances:

E
[
Wµz||Wαz||22

]
= E[Wµz]E[||Wαz||22]
+ Cov(Wµz, ||Wαz||22).

E
[
||Wµz||22||Wαz||22

]
= E[||Wµz||22]E[||Wαz||22]
+ Cov(||Wµz||22, ||Wαz||22).

The challenge, therefore, lies in deriving the two covariance
terms. Following the principles for computing the covari-
ance of products of random variables by Bohrnstedt and
Goldberger (1969), these terms can be decomposed into
functions of central moments of the individual latent vari-
ables zi. This makes the tractability of the entire expression
dependent on whether these underlying central moments can
be computed in closed form, as shown below.
Proposition 1. (Tractable Central Moments)
Let z ∈ Rd be a random vector with independent compo-

nents zi. The first four central moments of each component,
E[z̃i] := E[(zi − E[zi])k] for k ∈ {1, 2, 3, 4}, can be com-
puted in closed form of the parameters of its distribution if
zi follows:

1. A Gaussian distribution, zi ∼ N (µi, σ
2
i ).

2. A Bernoulli distribution, zi ∼ Bern(pi).
Derivation Sketch. The proof follows from the definitions
of the moment-generating functions for each distribution.
For a Gaussian variable, the central moments can be de-
rived to be simple functions of its variance σ2

i (Winkelbauer
2014). For a Bernoulli variable with probability pi, the raw
moments E[zki ] are trivial to compute, and the central mo-
ment of order k is given by (1 − pi)(−pi)k + pi(1 − pi)

k,
resulting in polynomials of pi. The full derivations are pro-
vided in the Appendix A.

With tractability of the individual central moments estab-
lished, we can now show how this allows for the analytical
computation of the full covariance terms.
Theorem 1. (Analytic Covariance of Linear Projections)

Let Wµz and Wαz be two linear projections of a
random vector z whose components zi are indepen-
dent. The covariance terms Cov(Wµz, ||Wαz||2) and
Cov(||Wµz||22, ||Wαz||22) can be expressed as a linear
combination of the first four central moments of the com-
ponents zi. The coefficients of this linear combination are
polynomials in the entries of the matrices Wµ and Wα.
Proof Sketch. The proof relies on the formula for the covari-
ance of products of random variables. The full derivation is
in Appendix A.

1. For the term Cov(Wµz, ||Wαz||22): We decompose
this covariance term into a function of third-order expec-
tations, E[z̃iz̃j z̃k], where z̃ = z − E[z]. Due to the inde-
pendence of the latent variables zi, these expectations are
non-zero only when all indices are identical (i = j = k).
This simplifies the expression to a function of the second

and third central moments of zi. The resulting expression
is a linear combination of the second and third central mo-
ments of zi. Its coefficients are third-degree polynomials of
the weight matrices Wµ and Wα.

2. For the term Cov(||Wµz||22, ||Wαz||22): Similarly, this
term can be decomposed into functions of fourth-order ex-
pectations, E[z̃iz̃j z̃kz̃l]. Under the independence assump-
tion, these complex expectations simplify into a linear com-
bination of the second, the third, and the fourth central mo-
ments. The coefficients are fourth-degree polynomials of the
weight matrices.

While the covariance terms can be computed analytically,
the full log-likelihood function as in Equation (6) still con-
tains the intractable logarithmic term E[log(Wαz)], To en-
sure the argument of the logarithm is non-negative and to
maintain a tractable, zero-variance objective, we approxi-
mate the term E[log(||Wαz||22)] using a second order Tay-
lor Expansion around the mean of ||Wαz||22 (Teh, Newman,
and Welling 2006):

E[log(||Wαz||22)] ≈ log(E[||Wαz||22)]−
Var[||Wαz||22]

2(E[||Wαz)2]||22
.

By combining the exact computations for the covariance
terms with this approximation, the expected reconstruction
log-likelihood can be expressed in an analytical solution:

E[log pθ(x|z)]

=
1

2

[
||x||22E[||Wαz||22]− 2xT (WµE[z]E[||Wαz||2])

+ Cov(Wµz, ||Wαz||22) + E[||Wµz||22]E[||Wαz||22]

+ Cov(||Wµz||22, ||Wαz||22)
]
+

1

2
log(2π)(

1

2
log(E[||Wαz||22])−

Var[||Wαz||22]
4(E[||Wαz||22])2

)
. (7)

This expression now relies only on the tractable moments
of the latent distribution and the decoder weights.

4.2 Silent Gradients with General VAEs
While the preceding section demonstrates that analytical
gradients are tractable for linear decoders with learnable
variance, the expressive power of a purely linear model is
limited. To handle more complex data distribution, we now
introduce a training strategy that integrates the benefits of
our tractable Silent Gradients with general, powerful non-
linear decoders.

Our approach uses a dual-decoder architecture consisting
of a shared encoder, a linear decoder for computing the ex-
act ELBO component and computing the exact Silent Gra-
dients, and a parallel, more expressive nonlinear decoder for
generating the final reconstructions. A visualization of this
pipeline is presented in Figure 1.

The training follows a two-stage process. In the initial
stage, the encoder and both decoders are trained, but the en-
coder parameters are updated only using the analytic gradi-
ents from the linear decoder. After a set number of epochs,
we freeze the encoder’s weights. In the second stage, only



Method
MNIST ImageNet CIFAR-10

Without SG With SG Without SG With SG Without SG With SG

Continuous None – 2.41 – 5.98 – 5.82
Reparameterization 1.91 1.80 5.79 5.69 5.70 5.53

Discrete
None – 2.77 – 6.45 – 6.72
Gumbel-Softmax 2.48 2.37 6.31 6.20 6.22 6.19
REINFORCE 2.96 2.94 6.87 6.77 6.74 6.67

Table 3: Performance comparison (BPD) (↓) for models with learnable variance across different datasets and methods. The
BPD score for the combined method is in bold when it is higher than its corresponding baseline. In both cases, the optimal
performance is achieved by combining a standard estimator with our Silent Gradients technique. The results show that combin-
ing standard estimators with our Silent Gradients (SG) technique consistently improves performance. Additionally, our method
used as a standalone estimator is competitive with and often superior to established baselines like REINFORCE.

Algorithm 1: Training Dynamics for Integrating Silent Gra-
dients
Require: Encoder Eϕ, Linear Decoder for α(z) Dlin,α,

Linear Decoder for µ(z) Dlin,µ, Nonlinear Decoder
Dnl

Require: Training data D, cut-off epoch Ncutoff , anneal-
ing rate λ

1: for nepoch = 1 to Nmax do
2: if nepoch == Ncutoff then
3: Freeze parameters ϕ of the encoder Eϕ

4: end if
5: for batch x in D do
6: z, stats← Eϕ(x)
7: Llin ← −Dlin(stats,x) ▷ Analytical ELBO

component Equation (7)
8: Lnl ← − log pnl(x|z) ▷ Sampled

reconstruction loss
9: wlin ← max(0, 1− nepoch · λ)

10: wnl ← 1− wlin

11: Lrecon ← wlin · Llin + wnl · Lnl

12: Ltotal ← Lrecon +DKL

13: Take gradient step on Ltotal for all unfrozen pa-
rameters

14: end for
15: end for

the nonlinear decoder continues to train, fine-tuning its pa-
rameters on the now fixed, well-structured latent space pro-
vided by the encoder.

The Silent Gradients framework can be extended to boost
the performance of existing gradient estimators. Instead of
having the encoder rely solely on the linear decoders’ ana-
lytical gradient, we introduce a gradient annealing schedule.
In this combined approach, the gradient signal sent to the
encoder Eϕ is a weighted average:

∇ϕ,total = wlin∇ϕ,Silent + wnl∇ϕ,Noisy, (8)

where wnl = 1−wlin,∇ϕ,Silent is the analytical gradient from
the linear decoder, and ∇ϕ,Noisy is the noisy gradient from
the nonlinear decoder using stochastic estimators. The train-
ing begins with the weight of the Silent Gradients, wlin, at

1.0 and the weight of the baseline estimator’s gradient, wnl,
at 0.0. As training progresses, wlin is gradually annealed to
0 while wnl is increased to 1.0. This dynamic allows the
encoder to first learns a representation guided by the noise-
free, analytical signal before fine-tuning with the sample-
based gradients from the full, expressive model. The com-
plete training dynamic is detailed in Algorithm 1.

We benchmark both our standalone Silent Gradients
method and the combined approach against baselines on
MNIST, ImageNet, and CIFAR-10. All models were tuned
for optimal hyperparameters and trained until convergence
to ensure a fair comparison. Our experimental results, pre-
sented in Section 4.2, demonstrate two key findings. First,
our Silent Gradients method consistently improves the per-
formance of existing gradient estimators. In every case,
combining a standard estimator with our technique results
in a lower BPD score compared to the baseline alone across
all tested datasets. This shows that our analytical gradient
serves as a powerful and general-purpose training aid. Sec-
ond, our method used as a standalone estimator is highly
competitive, even outperforming the widely used REIN-
FORCE estimator on both MNIST and ImageNet. We defer
more experiment details to Appendix Appendix B, and the
visualized reconstruction output is presented in Appendix C.

An analysis of the KL Divergence (KLD) offers an expla-
nation for these performance gains. As shown in Section 4.2,
models trained with Silent Gradients consistently achieve a
higher KLD, which suggests that the encoder learns a more
informative latent representation and better avoids posterior
collapse. We hypothesize this is because the zero-variance
analytical gradient provides a cleaner, more stable training
signal to the encoder than the noisy gradients from the stan-
dard stochastic estimators.

It is important to note that while these results are not
state-of-the-art, they are by design; our experiments use a
simple decoder architecture to isolate the impact of our gra-
dient computation technique, rather than to achieve record-
breaking BPD. Our method provides a consistent and signif-
icant performance lift across all baselines, demonstrating its
broad potential as a general tool for improving the training
of deep generative models.



Method
MNIST ImageNet CIFAR-10

Without SG With SG Without SG With SG Without SG With SG

Continuous None – 330.77 – 478.43 – 550.70
Reparameterization 155.15 165.76 382.87 533.20 427.79 577.25

Discrete
None – 91.82 – 534.29 – 243.69
Gumbel-Softmax 94.64 96.24 368.02 404.57 446.75 442.58
REINFORCE 109.67 128.55 294.88 381.27 303.33 367.10

Table 4: KL Divergence (KLD) comparison for models with learnable variance. The KLD for the combined method is in bold
when it is higher than its corresponding baseline. The results consistently show a higher KLD when a baseline estimator is
combined with our Silent Gradient technique, which suggests the encoder learns a more informative latent representation.

5 Related Work
VAEs. Variational Autoencoders (VAEs) are generative
models that learn a latent representation of data through an
encoder-decoder framework (Kingma and Welling 2014).
They can be categorized by their latent space: VAEs with
continuous latent variables typically use Gaussian distribu-
tions and are widely applied to tasks like image modeling
(Kingma and Welling 2014), while VAEs with discrete la-
tent spaces have become an active research area, as discrete
representations can offer better interpretability and compu-
tational efficiency (van den Oord, Vinyals, and Kavukcuoglu
2018; Jang, Gu, and Poole 2017). This line of work con-
tains various architectures of the discrete latent space, such
as the use of vector quantization in VQ-VAE (van den Oord,
Vinyals, and Kavukcuoglu 2018) and relaxed Boltzmann
priors in DAVE# (Vahdat, Andriyash, and Macready 2018).

Gradient Estimation Techniques. A key challenge in
training VAEs is propagating gradients through stochastic
sampling layers. In the continuous case, the reparameteriza-
tion trick, which separates the stochasticity into a fixed noise
source and a deterministic function, is widely used (Kingma
and Welling 2014). Although unbiased, reparameterization
still introduces variance that impedes optimization.

In the discrete case, two main lines of techniques are used.
The first is the use of the REINFORCE technique, or score
function estimator, which provides a general and unbiased
gradient estimate applicable to both discrete and continuous
latent variables. It rewrites the gradient of the expectation
as: ∇ϕEqϕ(z)f(z) = Eqϕ(z)[f(z)∇ϕ log qϕ(z)] (Williams
1992). However, this estimator is often hindered by high
variance, which has led to the development of variance re-
duction techniques such as control variates, (Mnih and Gre-
gor 2014; Kool, van Hoof, and Welling 2019).

The second line of research strives to make discrete
variables compatible with low-variance reparameterization
trick. The straight-through (ST) estimator approximates the
discrete sampling in the backward pass with a differentiable
function, such as using the mean value for a Bernoulli vari-
able (Bengio, Léonard, and Courville 2013). Another ap-
proach is to relax discrete variables into a continuous dis-
tribution; the Concrete (Maddison, Mnih, and Teh 2017)
or Gumbel-Softmax (Jang, Gu, and Poole 2017) distribu-
tion, for instance, achieves this by adding Gumbel noise to

the logits of a softmax function, enabling reparameteriza-
tion. More recent techniques such as SIMPLE (Ahmed et al.
2023), IndeCateR (Smet, Sansone, and Martires 2023), and
Implicit Maximum Likelihood Estimation (IMLE) (Niepert,
Minervini, and Franceschi 2021) offer alternative strate-
gies to derive low-variance gradient estimates for generative
models with discrete latent variables.

Linear VAEs. Linear VAEs are a cornerstone in various
contexts. First, their analytical tractability makes them an
ideal setting for theoretical investigation. For example, Lu-
cas et al. (2019) used linear VAEs to show that posterior col-
lapse can be an inherent issue of the marginal log-likelihood
objective, not a problem caused by the ELBO approxima-
tion. Other work uses them to investigate the implicit bias
of gradient descent, showing how training dynamics can re-
cover the ground-truth data manifold (Koehler et al. 2022).
Additionally, linear decoders are also crucial in tasks such as
learning sparse and interpretable features from complex data
(Lu et al. 2025; Vafaii, Galor, and Yates 2024). This broad
utility motivates our method, which allows for analytic gra-
dient estimation for any VAE with a linear decoder. Hav-
ing demonstrated its effectiveness in image modeling, Silent
Gradients could directly enhance these other applications.

Analytic ELBO. Lucas et al. (2019) derive an analytical
ELBO for linear VAEs under assumptions of a fixed scalar
output variance, a Gaussian latent space and a linear en-
coder. In contrast, our method is more general, that supports
a learnable variance for output Gaussian distribution, applies
to any latent distribution with tractable central moments, and
makes no assumptions about the encoder architecture.

6 Conclusion
In this work, we introduced Silent Gradients, a new ap-
proach to training VAEs without the problem brought
by variance in gradient estimation. Instead of improving
stochastic estimators, we leverage specific decoder architec-
tures to analytically compute a zero-variance gradient sig-
nal. We provided a derivation for this method and demon-
strated its effectiveness empirically. Our experiments show
that Silent Gradients not only outperforms standard estima-
tors in a controlled setting but also consistently improves
their performance when combined through a novel training
dynamic in general VAEs.
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A Derivation
In this section, we provide the step-by-step derivation for
Equation (4), Proposition 1, and Theorem 1.

A.1 Equation (4) (E||Wµz||22)
We wish to prove:

E[||Wµz||22] = ||
∑
i

wµ,iE[zi]||22 +
∑
i

||wµ,i||22Var(zi).

(9)
Derivation. To begin with, we shall expand E||Wµz||22 us-
ing summations:

E[||Wµz||22] = E

[
||
∑
i

wµ,izi||22

]
, (10)

= E

∑
i

∑
j

(wµ,izi)
T (wµ,jzj)

 , (11)

=
∑
i

∑
j

wT
µ,iwµ,jE[zizj ]. (12)

where wµ,i is the ith column of Wµ. Notably, E[zizj ] =
E[zi]E[zj ] + Cov(zi, zj), by the fundamental identity relat-
ing the second moment of a random vector to its mean and
covariance. Using this identity, we further split the expres-
sion into:

=
∑
i

∑
j

wT
µ,iwµ,jE[zi]E[zj ]

+
∑
i

∑
j

wT
µ,iwµ,jCov(zi, zj).

(13)

The first term, containing the expectations, can be fac-
tored into the square of a sum: ||

∑
i wµ,iE[zi]||22. The sec-

ond term, involving the covariance is simplified by decom-
posing the summation into two cases. The first case is when
the indices are equal (i = j), and the second is when they
are not (i ̸= j):∑

i

∑
j

wT
µ,iwµ,jCov(zi, zj)

=
∑
i

||wµ,i||22Cov(zi, zi) +
∑
i ̸=j

wT
µ,iwµ,jCov(zi, zj).

(14)

By definition, the covariance of a variable with itself is its
variance: Cov(zi, zi) = Var(zi). Additionally, we assume
the components of the latent vector z are independent. A
standard property of independent random variables is that
their covariance is 0. Therefore, for all i ̸= j, Cov(zi, zj) =
0, which cancels out the second summation entirely. By
combining the simplified expectation and covariance terms,
the final analytical expression for the quadratic term is:

E[||Wµz||22] = ||
∑
i

wµ,iE[zi]||22 +
∑
i

||wµ,i||22Var(zi).

(15)

A.2 Proposition 1
Proposition 1. Let z ∈ Rd be a random vector with indepen-
dent components zi. The first four central moments of each
component, E[z̃i] := E[(zi − E[zi])k] for k ∈ {1, 2, 3, 4},
can be computed in closed form of the parameters of its dis-
tribution if zi follows:

1. A Gaussian distribution, zi ∼ N (µi, σ
2
i ).

2. A Bernoulli distribution, zi ∼ Bern(pi).
Derivation. 1. Let zi be a random variable following a Gaus-
sian distribution, zi ∼ N (µi, σ

2
i ).

The kth central moment is defined as E[(zi − E[zi])k].
Winkelbauer (2014) introduces the formula to calculate cen-
tral moments for a Gaussian distribution:

E[(zi − µi)
k] =

{
σk
i (k − 1)!! if k ∈ N+ is even,

0 if k ∈ N+ is odd.
(16)

where (k − 1)!! is the double factorial. Using this formula,
we can state the first four central moments:
• k = 1. E[zi − µi] = 0 since k is odd.
• k = 2. E[(zi − µi)

2] = σ2
i (2 − 1)!! = σ2

i since k is
even. Notably, the result is the variance of this Gaussian
distribution.

• k = 3. E[(zi − µi)
3] = 0 since k is odd.

• k = 4. E[(zi − µi)
4] = σ4

i (4 − 1)!! = 3σ4
i since k is

even.
Therefore, all four central moments are closed-form func-

tions of the distribution’s variance σ2
i .

2. Let zi be a random variable following a Bernoulli dis-
tribution, zi ∼ Bern(pi). The variable zi takes the value 1
with probability pi and 0 with probability 1− pi. The mean
is E[zi] = pi.

The kth central moment is defined as E[(zi − E[zi])]. We
consider the two possible outcomes for zi:
• If zi = 1, then (zi − pi)

k = (1− pi)
k.

• If zi = 0, then (zi − pi)
k = (−pi)k.

We can compute the central moments using the definition
of expectation.

E[(zi − pi)
k] = (1− pi)

k · pi + (−pi)k · (1− pi). (17)

Now we can compute the first four central moments:
• k = 1. E[zi − pi] = (1 − pi)

1pi + (−pi)1(1 − pi) =
pi − p2i − pi + p2i = 0.

• k = 2.

E[(zi − pi)
2] = (1− pi)

2pi + (−pi)2(1− pi),

= pi − 2p2i + p3i + p2i − p3i ,

= pi − p2i = pi(1− pi). (18)

• k = 3.

E[(zi − pi)
3] = (1− pi)

3pi + (−pi)3(1− pi),

= (1− 3pi + 3p2i − p3i )pi − p3i (1− pi),

= pi − 3p2i + 3p3i − p4i − p3i + p4i ,

= pi − 3p2i + 2p3i
= pi(1− pi)(1− 2pi). (19)



• k = 4.

E[(zi − pi)
4] = (1− pi)

4pi + (−pi)4(1− pi),

= (1− 4pi + 6p2i − 4p3i + p4i )pi

+ p4i (1− pi),

= pi − 4p2i + 6p3i − 4p4i + p5i + p4i − p5i ,

= pi − 4p2i + 6p3i − 3p4i

= pi(1− pi)(1− 3pi + 3p2i ). (20)

Therefore, all four central moments are closed-form func-
tions of the parameter pi.

A.3 Theorem 1
Theorem 1. Let Wµz and Wαz be two linear projec-
tions of a random vector z whose components zi are inde-
pendent. The covariance terms Cov(Wµz, ||Wαz||2) and
Cov(||Wµz||22, ||Wαz||22) can be expressed as a linear com-
bination of the first four central moments of the components
zi. The coefficients of this linear combination are polynomi-
als in the entries of the matrices Wµ and Wα.
Proof. For simplicity in writing, we define:

u1 = u2 = Wµz, v1 = v2 = Wαz, (21)
∆u1 = ∆u2 = Wµz − E[Wµz] = Wµ(z − E[z]), (22)
∆v1 = ∆v2 = Wαz − E[Wαz] = Wα(z − E[z]). (23)

And we denote z̃ = z − E[z], thus E[z̃] = 0, and
E[(z̃)2] = Var(z).

Bohrnstedt and Goldberger (1969) introduces the formula
to compute covariance between the products of independent
variables as follows:

Cov(u1, v1v2) = E[v1]Cov(v2, u1) + E[v2]Cov(v1, u1)

+ E[(∆v1)(∆v2)(∆u1)].
(24)

Identical to the fixed variance case, we can derive
Cov(v1, u1) = Cov(v2, u1) =

∑
i w

T
α,iwµ,iVar(zi) =

WT
αWµE[(z̃)2]. And to compute the last term, we expand

it as follows, with ⊙ denoting Hadamard product:

E
[
(∆v1)(∆v2)(∆u1)

]
(25)

= E
[
(Wµz̃)⊙ (Wαz̃)⊙ (Wαz̃)

]
, (26)

= E
[∑

i

∑
j

∑
k

(wµ,iz̃i)⊙ (wα,j ⊙wα,kz̃j z̃k)
]
, (27)

=
∑
i

∑
j

∑
k

wµ,i ⊙wα,j ⊙wα,kE[z̃iz̃j z̃k]. (28)

Notably, E[z̃iz̃j z̃k] is nonzero only if i = k = j. In other
generic cases, for example, i = j ̸= k, we can always sepa-
rate z̃iz̃j from z̃k. In fact, because of the constraint, we can
simplify the expression:

E[z̃iz̃iz̃k] = E[(z̃i)2z̃k] (29)

= E[(z̃i)2]E[z̃k] (30)
= 0 (31)

Therefore, the only case we need to consider is when i =
j = k, and thus we can write:

E
[
(∆v1)(∆v2)(∆u1)

]
=
∑
i

∑
j

∑
k

wµ,i ⊙wα,j ⊙wα,k

E[z̃iz̃iz̃i] (32)

=
∑
i

wµ,i ⊙wα,j ⊙wα,kE[(z̃i)3]

(33)
Piecing all together, we derive the expression for the co-

variance term Cov(Wµz, (Wαz)
2):

Cov(Wµz, ||Wαz||22) = (WαE[z])⊙ (Wα ⊙WµE[(z̃)2])
+ (WαE[z])⊙ (Wα ⊙WµE[(z̃)2])∑
i

wµ,i ⊙wα,j ⊙wα,kE[(z̃i)3],

= 2(WαE[z])⊙ (Wα ⊙WµE[(z̃)2])

+
∑
i

wµ,i ⊙wα,j ⊙wα,kE[(z̃i)3].

(34)
Bohrnstedt and Goldberger (1969) also introduced the

formula to calculate the covariance between two products
of random variables:

Cov(u1u2, v1v2)

= E(u1)E(v1)Cov(u2, v2) + E(u1)E(v2)Cov(u2, v1)

+ E(u2)E(v1)Cov(u1, v2) + E(u2)E(v2)Cov(u1, v1)

+ E
[
∆u1 ∆u2 ∆v1 ∆v2

]
+ E(u1)E

[
∆u2 ∆v1 ∆v2

]
+ E(u2)E

[
∆u1 ∆v1 ∆v2

]
+ E(v1)E

[
∆u1 ∆u2 ∆v2

]
+ E(v2)E

[
∆u1 ∆u2 ∆v1

]
− Cov(u1, u2)Cov(v1, v2).

(35)
Following the derivation earlier, we can compute the

terms E(u1)E
[
∆u2 ∆v1 ∆v2

]
, E(u2)E

[
∆u1 ∆v1 ∆v2

]
,

E(v1)E
[
∆u1 ∆u2 ∆v2

]
, E

[
∆u1 ∆u2 ∆v1

]
. And sim-

ilarly, we wish to consider all nonzero cases in
E
[
∆u1 ∆u2 ∆v1 ∆v2

]
, and they are: i = j = k =

l, i = j ̸= k = l, i = k ̸= j = l, i = l ̸= k = j.
E
[
∆u1 ∆u2 ∆v1 ∆v2

]
(36)

= E
[
Wµz̃ ⊙Wµz̃ ⊙Wαz̃ ⊙Wαz̃

]
(37)

= E
[∑

i

∑
j

∑
k

∑
l

[(wµ,iz̃i)⊙ (wµ,j z̃j)]⊙

[(wα,kz̃k)⊙ (wα,lz̃l)]
]

(38)

=
∑
i

∑
j

∑
k

∑
j

wµ,i ⊙wµ,j ⊙wα,k ⊙wα,lE[z̃iz̃j z̃kz̃l]

(39)
Consider the case where i = j = k = l,

wµ,i ⊙wµ,i ⊙wα,i ⊙wα,iE[z̃iz̃iz̃iz̃i]

=
∑
i

wµ,i ⊙wµ,i ⊙wα,i ⊙wα,iE[(z̃i)4] (40)



And consider the case where i = j ̸= k = l

∑
i

∑
j,j ̸=i

(wµ,i ⊙wµ,i)⊙ (wα,j ⊙wα,j)E[z̃iz̃iz̃j z̃j ]

(41)

=
∑
i

∑
j,j ̸=i

(wµ,i ⊙wµ,i)⊙ (wα,j ⊙wα,j)E[(z̃i)2(z̃j)2]

(42)

=
∑
i

∑
j,j ̸=i

(wµ,i ⊙wµ,i)⊙ (wα,j ⊙wα,j)E[(z̃i)2]E[(z̃j)2]

(43)

=
∑
i

(wµ,i ⊙wµ,i)E[(z̃i)2]
∑
j,j ̸=i

(wα,j ⊙wα,j)E[(z̃j)2]

(44)

=
∑
i

(wµ,i ⊙wµ,i)E[(z̃i)2]∑
j

(wα,j ⊙wα,j)E[(z̃j)2]− (wα,i ⊙wα,i)E[(z̃i)2]


(45)

=
∑
i

(wµ,i ⊙wµ,i)E[(z̃i)2]
∑
j

(wα,j ⊙wα,j)E[(z̃j)2]

−
∑
i

(wµ,i ⊙wµ,i)E[(z̃i)2](wα,i ⊙wα,i)E[(z̃i)2]

(46)

This holds because we know i ̸= k. Similarly, when i =
k ̸= j = l,

∑
i

∑
j,j ̸=i

(wµ,i ⊙wµ,j)⊙ (wα,i ⊙wα,j)E[z̃iz̃j z̃iz̃j ]

(47)

=
∑
i

∑
j,j ̸=i

(wµ,i ⊙wµ,j)⊙ (wα,i ⊙wα,j)E[(z̃i)2(z̃j)2]

(48)

=
∑
i

∑
j,j ̸=i

(wµ,i ⊙wµ,j)⊙ (wα,i ⊙wα,j)E[(z̃i)2]E[(z̃j)2]

(49)

=
∑
i

wµ,i ⊙wα,iE[(z̃i)2]
∑
j,j ̸=i

wµ,j ⊙wα,jE[(z̃j)2]

(50)

=
∑
i

wµ,i ⊙wα,iE[(z̃i)2]
∑
j

wµ,j ⊙wα,jE[(z̃j)2]

−
∑
i

wµ,i ⊙wα,iE[(z̃i)2]wµ,i ⊙wα,iE[(z̃i)2] (51)

When i = l ̸= k = j,

∑
i

∑
j,j ̸=i

(wµ,i ⊙wµ,j)⊙ (wα,j ⊙wα,i)E[z̃iz̃j z̃j z̃i]

(52)

=
∑
i

∑
j

(wµ,i ⊙wµ,j)⊙ (wα,j ⊙wα,i)E[(z̃i)2(z̃j)2]

(53)

=
∑
i

∑
j,j ̸=i

(wµ,i ⊙wµ,j)⊙ (wα,j ⊙wα,i)E[(z̃i)2]E[(z̃j)2]

(54)

=
∑
i

wµ,i ⊙wα,iE[(z̃i)2]
∑
j,j ̸=i

wµ,j ⊙wα,jE[(z̃j)2]

(55)

=
∑
i

wµ,i ⊙wα,iE[(z̃i)2]∑
j

wT
µ,jwα,jE[(z̃j)2]−wµ,i ⊙wα,iE[(z̃i)2]


(56)

=
∑
i

wµ,i ⊙wα,iE[(z̃i)2]
∑
j

wµ,j ⊙wα,jE[(z̃j)2]

−
∑
i

wµ,i ⊙wα,iE[(z̃i)2]wµ,i ⊙wα,iE[(z̃i)2] (57)

(58)
Since these four cases are mutually exclusive, we could

rewrite the full term as:

E
[
∆u1 ∆u2 ∆v1 ∆v2

]
=
∑
i

wµ,i ⊙wµ,i ⊙wα,i ⊙wα,iE[(z̃i)4]

+
∑
i

wµ,i ⊙wµ,iE[(z̃i)2]
∑
j

wα,j ⊙wα,jE[(z̃j)2]

−
∑
i

wµ,i ⊙wα,iE[(z̃i)2]
∑
j

wµ,j ⊙wα,jE[(z̃j)2]

+ 2
∑
i

wµ,i ⊙wα,iE[(z̃i)2]
∑
j

wµ,j ⊙wα,jE[(z̃j)2]

− 2
∑
i

(wµ,i ⊙wα,iE[(z̃i)2])(wµ,i ⊙wα,iE[(z̃i)2]),

(59)

=
∑
i

wµ,i ⊙wµ,i ⊙wα,i ⊙wα,iE[(z̃i)4]

+
∑
i

wµ,i ⊙wµ,iE[(z̃i)2]
∑
j

wα,i ⊙wα,iE[(z̃j)2]

+ 2
∑
i

wµ,i ⊙wα,iE[(z̃i)2]
∑
j

wµ,j ⊙wα,jE[(z̃j)2]

− 3
∑
i

(wµ,i ⊙wα,iE[(z̃i)2])(wµ,i ⊙wα,iE[(z̃i)2]).

(60)



Putting this back to Equation (35), we can write the final
expression as:

Cov(u1u2, v1v2) = Cov(||Wµz||22, ||Wαz||22)
= 4(Wµ ⊙Wµ ⊙Wα ⊙Wα(E[z])2E[(z̃)2]

+
∑
i

wµ,i ⊙wµ,i ⊙wα,i ⊙wα,iE[(z̃i)4]

+ 2
∑
i

wµ,i ⊙wα,iE[(z̃i)2]
∑
j

wµ,j ⊙wα,jE[(z̃j)2]

− 3
∑
i

(wµ,i ⊙wα,iE[(z̃i)2])(wµ,i ⊙wα,iE[(z̃i)2])

+ 2WµE[z]⊙
∑
i

wµ,i ⊙wα,i ⊙wα,iE[(z̃i)3]

+ 2WαE[z]⊙
∑
i

wµ,i ⊙wµ,i ⊙wα,iE[(z̃i)3]. (61)

Therefore, we show that the covariance
terms Cov(Wµz, ||Wαz||2) (cf. Eq. 34) and
Cov(||Wµz||22, ||Wαz||22) (cf. Eq. 61) can be expressed as
a linear combination of the first four central moments of the
components zi. The coefficients of this linear combination
are polynomials in the entries of the weight matrices Wµ

and Wα.

B Experiment Details
B.1 Uniform Dequantization
Our model’s decoder defines a likelihood over continuous
values using a Gaussian distribution. However, the image
datasets we use, such as MNIST, consist of discrete pix-
els values. To bridge this gap, we employ uniform dequan-
tization. This standard technique adds a small amount of
uniform noise to each discrete pixel value, transforming
data into a continuous variable that is compatible with our
model’s likelihood function.

Specifically, for discrete data xint with values in
{0, 1, . . . , 255}, the dequantized data is defined as y =
x + u, where x = xint

256 , u ∼ U [0, 1
256 ). This process maps

each discrete pixel value to a unique continuous bin of width
1

256 within [0, 1).
The true probability of a discrete pixel value under our

continuous model is thus defined as:

Pmodel(X = xint) =

∫ (xint+1)/256

xint/256

pmodel(y)dy (62)

By applying Jensen’s inequality, we can establish a formal
relationship:

Eu[log pmodel(y)] ≤ log (Eu[pmodel(y)]) , (63)
= logPmodel(X = xint)− log(256).

(64)

Rearranging this gives us a lower bound on the discrete
log-likelihood:

logPmodel(X = xint) ≥ Eu[log pmodel(y)] + log(256).
(65)

Therefore, to ensure we are optimizing a valid lower
bound on the true log-likelihood of the discrete data, we
apply a correction to the pixel-wise reconstruction log-
likelihood by adding a constant log(256) to it.

B.2 Model Architecture
In this section, we detail the model architecture used in the
experiments in section 3 and 4.

Fixed Variance Experiment In section 3, we conduct a
controlled experiment with a fixed output variance, the VAE
consists of a convolutional encoder and a simple linear de-
coder. The encoder architecture, which is shared across both
continuous and discrete latent space models, is detailed in
Table 5. The decoder is a single fully-connected linear layer
that maps the latent variable z directly to the flattened out-
put image pixels. Equivalent to a learnable bias, we augment
the latent vector z by concatenating it with an additional di-
mension fixed at a constant value of 1.

Table 5: Encoder architecture for the fixed and learnable
variance experiments on MNIST.

Layer Kernel Size Stride Padding Activation
Conv2d 3x3 1 1 ReLU
Conv2d 3x3 1 1 ReLU
Conv2d 3x3 1 1 -
Flatten - - - -
Linear - - - -

Learnable Variance Experiment

MNIST. The encoder for the MNIST experiments is con-
sistent with fixed-variance experiment, as presented in Ta-
ble 5. The nonlinear decoder mirrors this structure with a
linear layer followed by several convolutional layers. The
architecture is detailed in Table 6. The linear decoder is a
single fully-connected layer without any activations.

Table 6: Nonlinear Decoder architecture for the learnable
variance experiments on MNIST.

Layer Kernel Size Stride Padding Activation
Linear - - - -
Reshape - - - -
Conv2d 3x3 1 1 ReLU
Conv2d 3x3 1 1 ReLU
Conv2d 3x3 1 1 ReLU
Conv2d 3x3 1 1 ReLU
Conv2d 1x1 1 0 -



ImageNet Architecture and CIFAR-10 For the more
complex CIFAR-10 and ImageNet datasets, we use deeper,
strided convolutional architectures for both encoder and the
nonlinear decoder, with batch normalization after each con-
volutional layers. The linear decoder remains a single fully-
connected layers. The architectures are detailed in Table 7
and Table 8.

Table 7: Encoder architecture for the learnable variance ex-
periments on CIFAR-10 and ImageNet.

Layer Kernel Size Stride Padding Activation

Conv2d 4x4 2 1 ReLU
BatchNorm2d - - - -
Conv2d 4x4 2 1 ReLU
BatchNorm2d - - - -
Conv2d 4x4 2 1 ReLU
BatchNorm2d - - - -
Conv2d 4x4 1 0 ReLU
BatchNorm2d - - - -
Flatten - - - -
Linear - - - -

Table 8: Nonlinear Decoder architecture for the learnable
variance experiments on CIFAR-10 and ImageNet.

Layer Kernel Size Stride Padding Activation

Linear - - - -
Reshape - - - -
ConvTranspose2d 4x4 1 0 ReLU
BatchNorm2d - - - -
ConvTranspose2d 4x4 2 1 ReLU
BatchNorm2d - - - -
ConvTranspose2d 4x4 2 1 ReLU
BatchNorm2d - - - -
ConvTranspose2d 4x4 2 1 -

B.3 Training Details
Data Preprocessing For all experiments, the input im-
ages are first transformed into PyTorch tensors. Before be-
ing passed to the model, the image data is scaled by 255

256 , in
preparation for uniform dequantization.

Baselines For our baseline models used throughout the
following experiments, we use standard implementations
for the Gumbel-Softmax and the reparameterization trick in
VAEs. For the REINFORCE, we implement a baseline to
reduce variance. Specifically, we use the running average of
the reconstruction loss.

Fixed Variance Experiment All models in this experi-
ment are trained using the AdamW optimizer with betas set
to (0.9, 0.95). We performed a hyperparameter search for
the learning rate over the values {1 × 10−4, 5 × 10−4, 1 ×
10−5, 5 × 10−5}. For each model, the best performing rate
was selected based on the final BPD score, which was eval-
uated on the validation set at the end of Epoch 500. All re-

ported metrics in Section 3.2 are likewise evaluated on the
validation set at this same epoch.

The output variance of the decoder was fixed for these
experimented. We tested σ2 values of {0.1, 0.05, 0.01} and
found that a fixed variance σ2 = 0.01 yielded the best results
across all models. The models are trained with a batch size
of 64, and no gradient clipping was applied. Additionally,
we did not use KL annealing; the β parameter for KLD is
fixed at 1.0 throughout training.

Gradient Variance Calculation The gradient variance
with respect to the encoder parameters reported in Section 2
is measured empirically. To isolate the variance only from
the latent variable sampling, we first perform a single for-
ward pass through the encoder on a fixed batch of data to
obtain the parameters of the latent distribution, which is to
avoid the randomness introduced by the uniform noise we
add for dequantization. With these parameters held constant,
we then draw 100 latent samples from this fixed distribution.
For each sample, we compute the corresponding reconstruc-
tion loss and backpropagate to get a gradient vector with
respect to the encoder’s parameters. The total gradient vari-
ance is computed by first calculating the variance for each
individual parameter in the encoder across the 100 gradient
samples. These per-parameter variances are then summed
together to produce the final scalar value that is reported in
Section 2.

Learnable Variance Experiment The training scheme is
similar to the fixed variance experiment. All models are
trained using AdamW optimizer(s) with betas of (0.9, 0.95),
and we selected the best learning rate for each baseline from
the set {1× 10−4, 5× 10−4, 1× 10−5, 5× 10−5}. For our
combined methods that integrate Silent Gradients, we built
upon the best baseline learning rates and introduced separate
optimizers for the linear decoder’s µ and α components. We
perform a hyperparameter search for the annealing rate from
{1× 10−2, 5× 10−2, 1× 10−3, 5× 10−3}, and the encoder
freeze epoch (cut-off) from {50, 80, 100, 150, 200}.

The training duration and batch sizes varied by dataset:

MNIST. Models are trained with a batch size of 64. The
REINFORCE models are trained for 300 epochs, while all
others are trained for 200 epochs.

ImageNet. Models are trained for 100 epochs with a batch
size of 128.

CIFAR-10. Models are trained for 2000 epochs with a
batch size of 256.

At the end of training, all models are guaranteed to be
converged. And like the fixed variance experiment, no KL
annealing or β parameter for KLD other than 1.0 is used.

Computing Resources All experiments included were
conducted on 8 NVIDIA GeForce RTX 4090 GPUs.

C Visualized Output
In this section, we provide the visualization of reconstructed
images using the trained model at the epoch where the met-
rics are reported.



The visualizations are generated by taking a fixed batch
of images from the validation set of each respective dataset.
These images are passed through the train encoder to obtain
a latent variable z, which is then passed to the correspond-
ing decoder to produce the reconstruction. For the learnable
variable experiment in which a dual-decoder setting is intro-
duced, only nonlinear decoder is used to generate the recon-
struction. The linear decoder used for computing the Silent
Gradient, in this case, is not used.

C.1 Fixed Variance Experiment
The visualizations show the original images and the corre-
sponding reconstructed mean, as in Figure 2.

Figure 2: Visual comparison of reconstructions for the fixed
variance experiment on MNIST. The top row (a) displays
original images from the validation set. Subsequent rows
show the reconstructed means from our Silent Gradients
method and the baseline estimators for both continuous and
discrete latent spaces.

C.2 Learnable Variance Experiment
In addition to the reconstructed mean, the visualizations in-
clude an additional row displaying the learned standard devi-
ation for each pixel. For visualization purposes, the standard
deviation is normalized to the range [0, 1] to be displayed as
an image, as shown in Figure 3, Figure 4, and Figure 5.

Figure 3: Reconstructions on the MNIST dataset in learn-
able variance experiment. The images are the output of the
nonlinear decoder.



Figure 4: Reconstructions on the ImageNet dataset in learn-
able variance experiment.

Figure 5: Reconstructions on the CIFAR-10 dataset in learn-
able variance experiment.


